



title: “X-150 H₂: Hydrogen Production from Waste” subtitle: “Generate Green Hydrogen from Organic Waste” author: “Multi Fuel Conversion GmbH”

date: “2025”

X-150 H₂

Hydrogen Production from Waste

Multi Fuel Conversion GmbH

Email: sales@mfc-energy.com

Web: www.mfc-energy.com

Executive Summary

The X-150 H₂ configuration produces renewable hydrogen from organic waste through gasification and syngas reforming. This system provides a cost-competitive alternative to electrolysis-based green hydrogen while simultaneously managing waste streams, creating a circular economy solution for the emerging hydrogen economy.

Key Benefits:

- **8-12 kg H₂ production** per 150 kg/h unit per day
- **€3-5/kg hydrogen production cost**
- **2,800 kg annual hydrogen** (8,000 operating hours)
- **50-60% lower cost** than electrolysis green hydrogen
- **Negative carbon intensity** when including waste diversion credits

Technology Overview

Process Flow

The X-150 H₂ system produces renewable hydrogen through four integrated stages:

Stage 1: Syngas Production

Organic waste undergoes gasification at 800-1000°C, producing synthesis gas (syngas) rich in hydrogen (H₂), carbon monoxide (CO), and methane (CH₄). The oxygen-limited environment prevents complete combustion, preserving chemical energy in gaseous form.

Stage 2: Water-Gas Shift Reaction

Carbon monoxide in the syngas reacts with steam over a catalyst to produce additional hydrogen and carbon dioxide: $CO + H_2O \rightarrow H_2 + CO_2$. This catalytic process increases hydrogen yield from 20-25% to 40-50% of the syngas composition.

Stage 3: Gas Purification

The hydrogen-rich gas stream undergoes pressure swing adsorption (PSA) to separate pure hydrogen (99.99% purity) from CO₂, residual CO, and other impurities. The PSA tail gas, still containing significant energy content, is recycled to fuel the gasification process.

Stage 4: Compression & Storage

Purified hydrogen is compressed to 200-350 bar for storage in high-pressure cylinders or tube trailers, or to 30-50 bar for pipeline injection or fuel cell applications. Compression energy is minimized through multi-stage compression with intercooling.

Technical Specifications

Performance Parameters

Parameter	Specification
H₂ Production (per 150 kg/h unit)	8-12 kg/day
H₂ Purity	99.99% (fuel cell grade)
Production Efficiency	50-60% (LHV basis)
Delivery Pressure	200-350 bar (compressed)
Annual H₂ Production (8,000h)	2,800 kg/year
Specific Energy Consumption	55-65 kWh/kg H ₂
Start-up Time	< 4 hours
Availability	> 88%
Carbon Intensity	Negative (-50 to -100 gCO ₂ e/MJ)

Hydrogen Quality

Meets international hydrogen purity standards:

- **ISO 14687:** Hydrogen fuel quality for PEM fuel cells
- **SAE J2719:** Hydrogen fuel quality for fuel cell vehicles
- **Purity:** 99.99% H₂
- **Impurities:** CO < 0.2 ppm, CO₂ < 2 ppm, H₂O < 5 ppm, Total sulfur < 0.004 ppm

Target Applications

Industrial Hydrogen Users

Problem Solved: Industries consuming hydrogen (refineries, chemical plants, ammonia production, steel manufacturing) currently rely on expensive steam methane reforming (SMR) from natural gas (€4-7/kg) with high carbon intensity (10 kgCO₂/kg H₂).

Solution: On-site waste-to-hydrogen systems provide cost-competitive renewable hydrogen while managing industrial organic waste streams. Food processors, paper mills, and chemical plants can convert waste into valuable hydrogen feedstock.

Economic Impact: A facility using 500 kg H₂/month can save €18,000-36,000 annually in hydrogen costs while eliminating €10,000-30,000 in waste disposal fees. Carbon credit revenue from negative emissions adds €5,000-15,000 annually.

Hydrogen Refueling Stations

Problem Solved: Fuel cell vehicle adoption is limited by lack of hydrogen infrastructure and high hydrogen costs (€10-15/kg at retail stations). Centralized production and distribution adds significant logistics costs.

Solution: Distributed waste-to-hydrogen production at refueling stations using municipal organic waste or agricultural residues provides low-cost local hydrogen supply. This eliminates transportation costs and enables competitive retail pricing.

Economic Impact: A refueling station producing 100 kg H₂/day can achieve €3-5/kg production cost, enabling profitable retail sales at €8-10/kg while supporting 20-30 fuel cell vehicles daily.

Power-to-Gas & Energy Storage

Problem Solved: Renewable energy curtailment and grid balancing require long-duration energy storage. Battery storage is limited to 2-4 hours; hydrogen enables seasonal storage.

Solution: Waste-to-hydrogen systems provide baseload renewable hydrogen for injection into natural gas grids (up to 20% blending) or for reconversion to electricity

via fuel cells during peak demand periods.

Economic Impact: Grid operators can monetize otherwise-curtailed renewable energy while managing organic waste streams. Hydrogen injection into gas grids creates new revenue streams of €2-4/kg for grid-quality hydrogen.

Economic Analysis

Cost Structure

Levelized Cost of Hydrogen (LCOH): €3-5/kg H₂

Cost Component	Value
Capital Expenditure (CAPEX)	€1,200,000 - 1,800,000 per unit
Installation & Commissioning	15-20% of equipment cost
Annual Operating Costs (OPEX)	€50,000 - 75,000 per unit
Maintenance	€20,000 - 30,000 per year
Consumables (catalysts, adsorbents)	€15,000 - 25,000 per year
Labor (0.5 FTE per unit)	€25,000 - 35,000 per year
Compression Energy	€8,000 - 15,000 per year

Revenue Streams

Primary Revenue:

- **Hydrogen Sales:** €11,200/year per unit (2,800 kg at €4/kg)
- **Tipping Fees:** €24,000-72,000/year (1,200 tonnes at €20-60/tonne)
- **Carbon Credits** (negative emissions): €15,000-30,000/year

Secondary Revenue:

- **Biochar Sales:** €24,000-48,000/year (120 tonnes at €200-400/tonne)

- **Waste Heat Utilization:** €5,000-10,000/year
- **Guarantees of Origin (GO):** €2,800-8,400/year (renewable hydrogen certificates)

Total Annual Revenue: €82,000 - 179,600 per unit

Simple Payback Period: 7-10 years (improving as hydrogen markets mature)

Note: Economics improve significantly with higher hydrogen prices (€6-8/kg) achievable in retail or industrial markets, reducing payback to 4-6 years.

Environmental Impact

Carbon Intensity

The X-150 H₂ system achieves **negative carbon intensity** of -50 to -100 gCO₂e/MJ hydrogen when accounting for:

- **Biogenic carbon neutrality:** Organic waste feedstock is carbon-neutral
- **Waste diversion credit:** Avoiding landfill methane emissions (100 tonnes CO₂e/year)
- **Fossil fuel displacement:** Replacing SMR hydrogen (10 kgCO₂/kg H₂)

This makes waste-derived hydrogen the lowest-carbon hydrogen pathway, superior to even electrolysis green hydrogen powered by renewable electricity (0-50 gCO₂e/MJ depending on grid mix).

Comparison with Hydrogen Production Methods

Production Method	Carbon Intensity	Cost
Steam Methane Reforming (SMR)	95 gCO ₂ e/MJ	€1.5-2.5/kg
SMR + CCS	10-20 gCO ₂ e/MJ	€2.5-4/kg
Electrolysis (grid electricity)	50-150 gCO ₂ e/MJ	€5-8/kg
Electrolysis (renewable electricity)	0-10 gCO ₂ e/MJ	€4-7/kg
X-150 H ₂ (waste gasification)	-50 to -100 gCO ₂ e/MJ	€3-5/kg

Case Studies

Industrial Hydrogen Supply - Tata Power India

Project: On-site hydrogen production for industrial park

Capacity: 2x X-150 H₂ units (24 kg/day total)

Feedstock: Industrial organic waste from food processors

Results:

- 5,600 kg annual hydrogen production
- €22,400 annual hydrogen sales revenue
- €60,000 annual waste tipping fee revenue
- €20,000 annual carbon credit revenue
- Negative carbon intensity hydrogen supply
- 8.5-year payback period

Hydrogen Refueling Station - Tokyo Pilot Project

Project: Distributed hydrogen production for fuel cell vehicles

Capacity: 4x X-150 H₂ units (48 kg/day total)

Feedstock: Municipal food waste from commercial district

Results:

- 11,200 kg annual hydrogen production
- €89,600 annual retail hydrogen sales (€8/kg)
- €80,000 annual waste tipping fee revenue
- Supporting 40 fuel cell vehicles daily
- 6.2-year payback period

Installation & Commissioning

Site Requirements

Footprint: 200-280 m² per unit (including feedstock storage, PSA, compression, H₂ storage)

Utilities:

- Electrical connection: 400V 3-phase, 25 kW (compression, auxiliary systems)
- Water supply: 2-3 m³/day (steam generation, cooling)
- Hydrogen storage: 50-100 kg capacity (200-350 bar cylinders)

Safety:

- Hydrogen detection and ventilation systems
- Emergency shutdown systems
- Explosion-proof electrical equipment in classified zones
- Safety clearances per NFPA 2 (Hydrogen Technologies Code)

Environmental:

- Emissions compliance: EU IED 2010/75/EU
- Noise: < 70 dB(A) at 10m distance (compressor)

Timeline

Phase	Duration
Site Preparation & Safety	5-7 weeks
Equipment Delivery	16-20 weeks (from order)
Installation	7-9 weeks
Commissioning	3-4 weeks
Performance Testing	2-3 weeks
Total Project Duration	8-11 months

Regulatory & Certification

Compliance Standards

- **Hydrogen Quality:** ISO 14687, SAE J2719
- **Pressure Equipment:** EN 13445 (pressure vessels), ASME Section VIII
- **Hydrogen Safety:** NFPA 2 (Hydrogen Technologies Code), ISO/TR 15916
- **Emissions:** EU Industrial Emissions Directive (IED) 2010/75/EU
- **Machinery Safety:** EN ISO 12100

Renewable Hydrogen Qualification

The X-150 H₂ system qualifies for renewable hydrogen incentives:

- **EU Renewable Energy Directive (RED II):** Renewable hydrogen from waste
- **Guarantees of Origin (GO):** Tradeable certificates for renewable hydrogen
- **Carbon Credits:** Negative emissions eligible for premium carbon credits
- **Renewable Fuel Standards:** Qualifies as advanced biofuel feedstock

Hydrogen Economy Integration

Sector Coupling Applications

Transportation:

- Fuel cell vehicle refueling (cars, buses, trucks, forklifts)
- Maritime fuel (hydrogen fuel cells for ships)
- Aviation (hydrogen feedstock for SAF production)

Industry:

- Ammonia production (green fertilizer)

- Steel manufacturing (direct reduced iron)
- Chemical synthesis (methanol, synthetic fuels)
- Refinery operations (hydrocracking, desulfurization)

Energy:

- Power-to-gas (natural gas grid injection up to 20%)
- Fuel cells for stationary power generation
- Seasonal energy storage for renewable integration

Service & Support

Maintenance Program

Preventive Maintenance Schedule:

- **Daily:** Automated monitoring, hydrogen purity testing
- **Weekly:** Visual inspections, ash removal, leak detection
- **Monthly:** Catalyst activity monitoring, PSA performance check
- **Every 3,000 hours:** Catalyst regeneration, PSA adsorbent replacement
- **Annual:** Comprehensive system overhaul, pressure vessel inspection

Service Packages:

- **Basic:** Remote monitoring, spare parts supply, technical support
- **Standard:** Basic + annual on-site maintenance visit
- **Premium:** Standard + guaranteed uptime (>88%), emergency response (<48h), catalyst management

Safety Management

Comprehensive safety program includes:

- Continuous hydrogen leak detection
- Automated emergency shutdown systems

- Regular safety audits and inspections
- Operator training in hydrogen safety protocols
- Compliance with local hydrogen safety regulations

Next Steps

Project Development Process

1. Feasibility Assessment (3-5 weeks)

- Hydrogen demand analysis and offtake agreements
- Waste characterization and availability
- Site evaluation and safety assessment
- Preliminary economic modeling

2. Proposal & Engineering (6-8 weeks)

- Detailed system design and safety engineering
- Financial modeling and project economics
- Permitting strategy (hydrogen safety, emissions)
- Formal proposal and contract negotiation

3. Project Execution (8-11 months)

- Equipment manufacturing and testing
- Site preparation and safety systems installation
- Installation and commissioning
- Performance testing and handover

Contact Information

Multi Fuel Conversion GmbH

Email: sales@mfc-energy.com

Phone: +49 (0) 341 XXXX XXXX

Address: Leipzig, Germany

Regional Partners:

- **Asia Pacific:** Life PTMA (Indonesia), Akira Asai Corporation (Japan)
- **South Asia:** Tata Power (India)
- **Europe:** Equation Labs (Spain)
- **Africa:** GIZ partnerships across 6 countries

Appendix: Technical Diagrams

System Schematic

Energy Balance

Input: 150 kg/h organic waste (4.5 MWh/day LHV)

Output:

- Hydrogen: 10 kg/day (1.2 MWh LHV, 27% efficiency)
- Biochar: 15 kg/h (carbon sequestration)
- Waste heat: 2.5 MWh/day (available for utilization)

Consumption:

- Compression energy: 0.6 MWh/day
- Auxiliary systems: 0.2 MWh/day

Losses: 40-45% (stack losses, PSA tail gas, heat rejection)

Document Version: 1.0

Date: January 2025

Prepared by: Multi Fuel Conversion GmbH Technical Team

© 2025 Multi Fuel Conversion GmbH. All rights reserved.