



title: “X-150 VOLT: Electricity Generation from Waste” subtitle: “Transform Waste into Reliable, Dispatchable Power” author: “Multi Fuel Conversion GmbH”

date: “2025”

X-150 VOLT

Electricity Generation from Waste

Multi Fuel Conversion GmbH

Email: sales@mfc-energy.com

Web: www.mfc-energy.com

Executive Summary

The X-150 VOLT configuration transforms organic waste into reliable, dispatchable electricity through advanced gasification and combined heat and power (CHP) technology. This system provides a sustainable solution for industrial facilities, off-grid

communities, and waste-to-energy operators seeking to convert waste disposal costs into valuable electrical power generation.

Key Benefits:

- **50-70 kWe power output** per 150 kg/h unit
- **25-30% electrical efficiency**, 75-85% combined efficiency (CHP)
- **480 MWh annual electricity production** (8,000 operating hours)
- **€0.08-0.12/kWh levelized cost** of electricity (LCOE)
- **240 tonnes CO₂ avoided annually** vs. grid electricity

Technology Overview

Process Flow

The X-150 VOLT system operates through three integrated stages that convert solid waste into grid-quality electricity:

Stage 1: Syngas Production

Organic waste feedstock undergoes controlled gasification at 800-1000°C in an oxygen-limited environment. This thermochemical conversion process breaks down complex organic molecules into synthesis gas (syngas) composed primarily of hydrogen (H₂), carbon monoxide (CO), and methane (CH₄). The gasification process is fuel-flexible, accepting municipal solid waste, agricultural residues, food waste, and industrial organic waste streams.

Stage 2: Gas Engine CHP

The cleaned and conditioned syngas fuels a reciprocating gas engine optimized for low-calorific value fuel gases. The engine drives a three-phase alternator producing 400V electrical power at 50 Hz frequency. Waste heat from the engine exhaust and cooling systems is recovered through integrated heat exchangers, achieving combined heat and power efficiencies of 75-85%.

Stage 3: Grid Connection

Generated electricity is conditioned through power electronics for voltage regulation, frequency synchronization, and power quality management. The system can operate

in grid-parallel mode for feed-in tariff revenue, island mode for off-grid applications, or load-following mode to match on-site demand profiles.

Technical Specifications

Performance Parameters

Parameter	Specification
Power Output (per 150 kg/h unit)	50-70 kWe
Electrical Efficiency	25-30%
Combined Efficiency (CHP)	75-85%
Voltage	400V 3-phase
Frequency	50/60 Hz
Annual Electricity (8,000h operation)	480 MWh/year
Load Following Range	50-100%
Start-up Time	< 2 hours
Availability	> 90%
Maintenance Interval	2,000 hours

Feedstock Flexibility

The X-150 VOLT accepts diverse organic waste streams:

- **Municipal Solid Waste (MSW):** Mixed municipal waste after recyclables separation
- **Agricultural Residues:** Crop residues, animal bedding, pruning waste
- **Food Waste:** Pre-consumer and post-consumer organic waste
- **Industrial Organic Waste:** Food processing waste, paper/cardboard, wood waste
- **Sewage Sludge:** Dried municipal or industrial wastewater sludge

Feedstock moisture content should be below 20% for optimal performance. Higher moisture content materials require pre-drying using waste heat from the system.

Target Applications

Industrial Self-Consumption

Problem Solved: High electricity costs (€0.15-0.25/kWh) and unreliable grid supply impact manufacturing competitiveness.

Solution: On-site power generation from industrial organic waste streams provides predictable energy costs while eliminating waste disposal fees (€20-60/tonne). Food processors, breweries, paper mills, and agricultural operations benefit from converting waste liabilities into energy assets.

Economic Impact: A facility processing 10 tonnes/day of organic waste can generate 350 kW_e of baseload power, saving €250,000-400,000 annually in combined electricity and waste disposal costs.

Off-Grid Rural Electrification

Problem Solved: Remote communities lack grid access and rely on expensive diesel generators (€0.30-0.50/kWh fuel cost) with complex logistics.

Solution: Distributed waste-to-electricity systems provide energy independence using locally available agricultural and municipal waste. Systems can power villages, agricultural processing facilities, or industrial operations in areas without grid infrastructure.

Economic Impact: Replacing diesel generation with waste-derived electricity reduces fuel costs by 70-80% while creating local waste management infrastructure and eliminating fuel transportation logistics.

Grid-Connected Waste-to-Energy

Problem Solved: Utilities and independent power producers need dispatchable renewable baseload capacity to complement intermittent solar and wind generation.

Solution: Grid-scale installations of multiple X-150 units provide reliable, controllable renewable power with guaranteed feedstock supply through waste management contracts. Systems qualify for renewable energy certificates (RECs) and feed-in tariffs.

Economic Impact: Multiple revenue streams including electricity sales (€0.08-0.15/kWh), tipping fees (€20-60/tonne), RECs (€0.01-0.03/kWh), and carbon credits (€25-50/tonne CO₂) create attractive project economics with 4-6 year payback periods.

Economic Analysis

Cost Structure

Levelized Cost of Electricity (LCOE): €0.08-0.12/kWh

Cost Component	Value
Capital Expenditure (CAPEX)	€800,000 - 1,200,000 per unit
Installation & Commissioning	15-20% of equipment cost
Annual Operating Costs (OPEX)	€40,000 - 60,000 per unit
Maintenance	€15,000 - 25,000 per year
Consumables	€10,000 - 15,000 per year
Labor (0.5 FTE per unit)	€25,000 - 35,000 per year

Revenue Streams

Primary Revenue:

- **Electricity Sales/Savings:** €38,000/year per unit (480 MWh at €0.08/kWh)
- **Tipping Fees:** €24,000-72,000/year (1,200 tonnes at €20-60/tonne)
- **Renewable Energy Certificates:** €4,800-14,400/year (480 MWh at €10-30/MWh)

Secondary Revenue:

- **Carbon Credits:** €6,000-12,000/year (240 tonnes CO₂ at €25-50/tonne)

- **Biochar Sales:** €24,000-48,000/year (120 tonnes at €200-400/tonne)
- **Waste Heat Utilization:** €5,000-15,000/year (thermal energy sales/savings)

Total Annual Revenue: €101,800 - 209,400 per unit

Simple Payback Period: 4-6 years (depending on local electricity prices and tipping fees)

Environmental Impact

Carbon Footprint Reduction

Each X-150 VOLT unit (150 kg/h capacity) operating 8,000 hours annually avoids **240 tonnes of CO₂ equivalent emissions** compared to grid electricity from fossil fuel sources. This calculation assumes:

- Grid electricity carbon intensity: 500 gCO₂/kWh (European average)
- Waste diversion from landfill methane emissions: 100 tonnes CO₂e avoided
- Biogenic carbon neutrality of organic waste feedstock

Waste Diversion

Annual waste processing capacity of **1,200 tonnes per unit** diverts organic waste from landfills, reducing methane emissions (25x more potent than CO₂ as a greenhouse gas) and leachate contamination of groundwater.

Circular Economy Benefits

The X-150 VOLT system produces valuable co-products alongside electricity:

- **Biochar:** 10% of feedstock mass becomes stable carbon-rich biochar suitable for soil amendment, carbon sequestration, or industrial applications
- **Waste Heat:** 150-200 kWth of thermal energy available for district heating, industrial processes, or absorption cooling
- **Mineral Ash:** Inorganic ash fraction (2-5% of feedstock) contains plant nutrients suitable for agricultural use after heavy metal testing

Case Studies

Industrial Food Processor - Ghana

Project: Golden Foods Ghana waste-to-power installation

Capacity: 10x X-150 VOLT units (700 kWe total)

Feedstock: Food processing waste (fruit/vegetable residues)

Results:

- 5,600 MWh annual electricity generation
- €450,000 annual electricity cost savings
- €360,000 annual waste disposal savings
- 2,800 tonnes CO₂ avoided annually
- 4.2-year payback period

Municipal Waste-to-Energy - Canary Islands

Project: Las Palmas municipal waste gasification facility

Capacity: 2x X-150 VOLT units (140 kWe total)

Feedstock: Source-separated organic municipal waste

Results:

- 960 MWh annual electricity generation
- €120,000 annual grid electricity revenue (feed-in tariff)
- €60,000 annual tipping fee revenue
- 480 tonnes CO₂ avoided annually
- Municipal waste management cost reduction of 35%

Installation & Commissioning

Site Requirements

Footprint: 150-200 m² per unit (including feedstock storage and ash handling)

Utilities:

- Electrical connection: 400V 3-phase, 10 kW auxiliary power
- Water supply: 1-2 m³/day for cooling (closed-loop recirculation)
- Compressed air: Optional for pneumatic controls

Environmental:

- Emissions compliance: EU IED 2010/75/EU or local equivalents
- Noise: < 65 dB(A) at 10m distance (acoustic enclosure included)
- Safety clearances: 5m perimeter for maintenance access

Timeline

Phase	Duration
Site Preparation	4-6 weeks
Equipment Delivery	12-16 weeks (from order)
Installation	6-8 weeks
Commissioning	2-3 weeks
Performance Testing	1-2 weeks
Total Project Duration	6-8 months

Regulatory & Certification

Compliance Standards

- **Emissions:** EU Industrial Emissions Directive (IED) 2010/75/EU
- **Electrical Safety:** IEC 61000 (EMC), IEC 60034 (rotating machines)
- **Pressure Equipment:** EN 13445 (unfired pressure vessels)
- **Machinery Safety:** EN ISO 12100 (machinery safety)
- **Grid Connection:** IEEE 1547 / EN 50438 (distributed generation)

Renewable Energy Qualification

The X-150 VOLT system qualifies for renewable energy incentives under:

- **EU Renewable Energy Directive (RED II):** Waste-derived electricity from non-fossil sources
- **Feed-in Tariffs:** Eligible in Germany, Spain, Italy, and other EU markets
- **Renewable Energy Certificates (RECs):** Tradeable certificates for renewable electricity generation
- **Carbon Credits:** Voluntary carbon market credits for emissions reduction

Service & Support

Maintenance Program

Preventive Maintenance Schedule:

- **Daily:** Automated system monitoring and data logging
- **Weekly:** Visual inspections, ash removal, consumables check
- **Every 2,000 hours:** Engine oil change, filter replacement, gasifier inspection
- **Annual:** Comprehensive system overhaul, refractory inspection, calibration

Service Packages:

- **Basic:** Remote monitoring, spare parts supply, technical support
- **Standard:** Basic + annual on-site maintenance visit
- **Premium:** Standard + guaranteed uptime (>90%), emergency response (<48h)

Training

Comprehensive operator training program includes:

- 5-day on-site commissioning training for operations team
- Online learning modules for system operation and troubleshooting
- Annual refresher training and system optimization workshops
- 24/7 remote technical support hotline

Next Steps

Project Development Process

1. Feasibility Assessment (2-4 weeks)

- Waste characterization and availability analysis
- Site evaluation and utility assessment
- Preliminary economic modeling
- Regulatory compliance review

2. Proposal & Engineering (4-6 weeks)

- Detailed system design and integration
- Financial modeling and project economics
- Permitting strategy and timeline
- Formal proposal and contract negotiation

3. Project Execution (6-8 months)

- Equipment manufacturing and testing

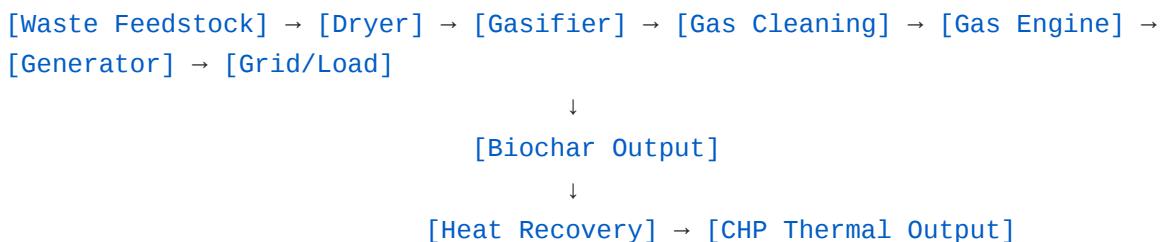
- Site preparation and civil works
- Installation and commissioning
- Performance testing and handover

Contact Information

Multi Fuel Conversion GmbH

Email: sales@mfc-energy.com

Phone: +49 (0) 341 XXXX XXXX


Address: Leipzig, Germany

Regional Partners:

- **Asia Pacific:** Life PTMA (Indonesia), Akira Asai Corporation (Japan)
- **South Asia:** Tata Power (India)
- **Europe:** Equation Labs (Spain)
- **Africa:** GIZ partnerships across 6 countries

Appendix: Technical Diagrams

System Schematic

Energy Balance

Input: 150 kg/h organic waste (4.5 MWh/day LHV)

Output:

- Electricity: 1.3 MWh/day (29% efficiency)
- Thermal energy: 3.2 MWh/day (71% thermal output)
- Biochar: 15 kg/h (carbon sequestration)

Losses: 5-10% (stack losses, radiation, auxiliary consumption)

Document Version: 1.0

Date: January 2025

Prepared by: Multi Fuel Conversion GmbH Technical Team

© 2025 Multi Fuel Conversion GmbH. All rights reserved.